Strengthening research management and support services in sub-Saharan African universities and research institutions

[version 1; peer review: 2 approved with reservations]

Justin Pulford, Susie Crossman, Sara Begg, Jessica Amegee Quach, Pierre Abomo, Taghreed El Hajj, Imelda Bates

Department for International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK

Abstract

Background: International development partners and research councils are increasingly funding research management and support (RMS) capacity strengthening initiatives in sub-Saharan Africa (SSA) as part of a broader investment in strengthening national and regional research systems. However, the evidence-base to inform RMS capacity strengthening initiatives is limited at present. This research note presents a synthesis of 28 RMS capacity assessments completed in 25 universities/research institutions from across 15 SSA countries between 2014 and 2018.

Methods: All 28 capacity assessments were completed following a standardised methodology consisting of semi-structured interviews conducted with research and research support staff at the respective institution as well as document reviews and observation of onsite facilities. Data were extracted from the 28 reports detailing the findings of each assessment according to a framework synthesis approach.

Results: In total, 13 distinct capacity gap categories emerged from across the 28 RMS capacity assessment reports. Almost all the institutions assessed faced significant gaps in RMS capacity within and across each of these 13 categories. The 13 categories were not independent of each other and were often closely inter-connected. Commonalities were also evident across multiple categories, the two most obvious of which were severe fiscal constraints and the often-complex bureaucracy of the institutional operating environment.

Conclusions: The synthesis findings reveal multiple, commonly shared RMS capacity gaps in universities and research institutions across SSA. No single intervention type, or focus, would be sufficient to strengthen capacity across all 13 areas; rather, what is needed to facilitate a significant shift in RMS capacity within such SSA universities and research institutions is a combination of interventions, consisting of differing levels of cost and complexity, variously led (or supported) by both internal and external actors.
Keywords
Research Management, Research Capacity Strengthening, Capacity Assessment, Sub-Saharan Africa, University, Research Institution

Corresponding author: Justin Pulford (justin.pulford@lstmed.ac.uk)

Author roles: Pulford J: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Methodology, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Crossman S: Data Curation, Formal Analysis, Project Administration, Writing – Review & Editing; Begg S: Formal Analysis, Writing – Review & Editing; Amegee Quach J: Formal Analysis, Writing – Review & Editing; El Hajj T: Formal Analysis, Writing – Review & Editing; Bates I: Conceptualization, Funding Acquisition, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the African Academy of Sciences (AAS) through the Developing Excellence in Leadership, Training and Science in Africa (DELTAS Africa) Community and Public Engagement fund [AAS/021/2019]. The DELTAS Africa Initiative is an independent funding scheme of the AAS's Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [200918/Z/16/Z] and the UK government. The views expressed in this publication are those of the authors and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK government. This work reports data obtained from multiple projects, including: Royal Society [GB-1-203041], sub-awardee IB; GCRF/Natural Environment Research Council [NE/P02095X/1], sub-awardee JP; Department for International Development [PO 6407], awardee MT; London School of Hygiene & Tropical Medicine [ITDCGH26 and ITDCVT6810], sub-awardee IB; GlaxoSmithKline [3000029095], awardee IB; GCRF/Biotechnology and Biological Sciences Research Council [BB/P027954/1], sub-awardee JP; Grand Challenges Research Fund [MR/P027873/1], sub-awardee JP; and European & Developing Countries Clinical Trials Partnership [EDCTP-CSA-Ebola-355], awardee JR.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Pulford J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Pulford J, Crossman S, Begg S et al. Strengthening research management and support services in sub-Saharan African universities and research institutions [version 1; peer review: 2 approved with reservations] AAS Open Research 2020, 3:31 https://doi.org/10.12688/aasopenres.13100.1

First published: 20 Jul 2020, 3:31 https://doi.org/10.12688/aasopenres.13100.1
Introduction

Well-developed research management and support (RMS) services ensure a conducive research environment within a university or dedicated research institution. In many sub-Saharan Africa (SSA) countries, RMS capacity is poorly developed contributing towards low research production from SSA universities/research institutions relative to their counterparts elsewhere. International development partners and research councils are increasingly funding RMS capacity strengthening initiatives in SSA settings as part of a broader investment in strengthening national and regional research systems. However, the evidence-base to inform RMS capacity strengthening initiatives is limited at present. Large-scale assessments of specific capacity gaps across and between SSA research institutions are scarce and we do not yet have sufficient evidence to reliably inform which types of intervention, in which combinations, with which focus and in what proportion, are required to effectively and sustainably build RMS capacity in SSA settings. Thus, we currently do not understand either what the RMS capacity gaps are or how best to address them.

In this research note, we present a synthesis of 28 RMS capacity assessments completed in 25 universities/research institutions from across 15 SSA countries between 2014 and 2018. Drawing on the findings from this synthesis, we then consider their implications with respect to the design, implementation and evaluation of interventions designed to strengthen RMS capacity in low- and middle-income country settings.

Methods

The findings presented in this research note have been drawn from a review of 28 project reports. Each report presented the outcome of an RMS capacity assessment completed by the Centre for Capacity Research, Liverpool School of Tropical Medicine, in collaboration with the SSA institution being assessed and following a standardised methodology as described elsewhere. The SSA institutions were collectively participating in eight distinct research capacity strengthening projects and the assessments were conducted in support of their respective programme objectives. Each assessment focused fully or in part on RMS and consisted of semi-structured interviews conducted onsite with research and research support staff at the respective institution as well as document reviews and observation of facilities. Pre-visit briefings were conducted remotely with the lead investigator at each institution to explain the purpose and process of the visits and to schedule interviews with diverse RMS and research staff. Lead investigators were provided with the data collection tools in advance of the visits so they were aware of the range and type of information that would be sought. As far as possible, all data collected during the visits were obtained from at least two independent sources to enhance validity. Interview notes were typed up within a few hours of each interview, checked against audio-recordings of the interviews (available if interviewees gave permission) and final versions verified among the site visit team. Whilst assessments conducted at dedicated research centres tended to span the entire institution, assessments completed at universities typically focused on either a single college or department (e.g. College of Health Sciences or the Department of Public Health). In total, 16 assessments were completed within the context of health science, four in natural sciences, six in agriculture, and two in veterinary sciences.

The assessments were designed to gauge the presence and capacity of existing RMS services against an international benchmark. The benchmark was determined based on a review of the RMS literature and in consultation with various stakeholders and focused on six core domains: institutional research strategy; institutional support services; research facilities; human resource management for research; training activities for research; and external promotion of research findings. All assessments were qualitative, with no attempt made to rank or score existing capacities. A detailed report (~20–30 pages) describing the identified capacity gaps, strengths, and recommended capacity strengthening actions was completed at the conclusion of each on-site assessment.

Data were extracted from the 28 reports according to a framework synthesis approach. The framework, constructed in Microsoft Excel, consisted of eight column headings including the institution name, the six core RMS domains listed above and an ‘other’ column and 28 rows, one for each report (see underlying data). Two independent reviewers, experienced in the institutional capacity assessment process, read the full text of each report and recorded any listed or implied capacity challenges relating to RMS within the corresponding column in the spreadsheet (e.g. ‘unreliable power supply’ would be listed under the ‘research facilities/infrastructure’ column against the respective report). A third reviewer subsequently compared the report extract entries in the spreadsheet. When the same or similar capacity gap was reported by both the initial reviewers, a single representative label was applied to describe it. When a capacity gap was only identified by one of the first two reviewers, the third reviewer consulted the full text of the corresponding report and made a final decision as to its inclusion. Once completed, the recorded entries in the framework were then thematically organised into distinct capacity gap categories. This was an iterative process led by the first author of this research note in collaboration with all co-authors.

Results

In total, 13 distinct capacity gap categories emerged from across the 28 RMS capacity assessment reports. Each of the 13 categories, along with specific examples of capacity gaps common to each category, are presented in Box 1. Almost all the institutions assessed faced significant gaps in RMS capacity within and across each of these 13 categories.
Box 1. Common RMS capacity gaps

1. Physical Infrastructure
 - Unreliable power supply; insufficient laboratory-, office-, study-, meeting or physical storage-space.

2. Information and Communication Technologies (ICT) Infrastructure
 - Insufficient ICT hardware; nil/limited access to specialist software; limited internet access or bandwidth capacity.

3. Operating Equipment
 - Absence or critical shortage of essential laboratory-, field- and office equipment; vehicle shortage.

4. Laboratory Services and Support
 - Poorly maintained laboratory equipment; limited funding to support laboratory maintenance; limited/nill laboratory quality control systems or accreditation; insufficient biosafety/laboratory safety protocols and resources; nil/sub-optimal revenue generation from provision of laboratory services.

5. Research Funding
 - Limited/nill availability of national and/or institutional research funding; limited funding to support post-graduate research required for attainment of award.

6. Workforce
 - Excessive workloads for research and research support staff; prolonged staffing vacancies due to hire freezes and/or absence of suitably qualified candidates; aging workforce; under-qualified and/or unexperienced workforce; insufficient laboratory technicians and/or research support staff.

7. Remuneration
 - Uncompetitive and/or insufficient salary relative to living costs; inequitable salary 'top-up' system applied to externally funded research grants (e.g. academics costed in, but support staff not).

8. Professional Development
 - Limited/nill access to training/professional development activities for research and research support staff (technicians and support staff having lowest levels of access); limited/nill institutional structures/services to support professional development; limited/nill staff mentorship schemes; limited/nill staff appraisal and performance mechanisms.

9. Career Progression
 - Limited promotion opportunities (especially for technicians and research support staff); job-insecurity; poor staff retention (primarily support staff); limited opportunities for junior academics to enter faculty positions (exacerbated by aging workforce remaining in post).

10. Institutional Support Services
 - Inefficient/inadequate financial management-, procurement-, data management-, human resource support services; limited access to research literature/e-resources; limited/nill functionality of institutional review boards.

11. Research Support and Project Management
 - Limited/nill pre- and post-award support services, quality assurance and monitoring; limited research cost recovery policies/expertise; limited/nill institutional research strategy.

12. Internal Communication and Collaboration
 - Limited internal (inter-departmental) communication and collaboration mechanisms; limited access to and/or awareness of institutional policies and/or available support services.

13. External Communication and Networking
 - Limited/nill institutional communications strategy; limited/nill institutional funds and/or staff incentives to support knowledge translation activities; limited/nill research output repository; limited support or oversight of institutional website (content and maintenance).

The 13 categories were not independent of each other, but often closely inter-connected. For example, financial management (i.e. institutional support services) was often constrained by a lack of computing hardware and specialised software (ICT infrastructure), limited training opportunities (professional development), few promotion opportunities (career progression) and perceived low pay (remuneration). Commonalities were also evident across multiple categories, the two most obvious of which were severe fiscal constraints and the often-complex bureaucracy of the institutional operating environment. Many capacity gaps were directly attributable to, or exacerbated by, these two constraints.

Discussion

The synthesis revealed 13 distinct capacity gap categories, suggesting a diverse array of interventions are needed to ‘shift’ current RMS capacity to a significantly stronger position in universities and research institutions across SSA. Resolving some of the identified capacity gaps would necessitate financial support, for example to purchase required resources (e.g. laboratory equipment or ICT hardware), to invest in high-cost infrastructure developments (e.g. laboratory, study or office space), and to support research funding. In other cases, provision of training or technical assistance (e.g. supporting professional development, laboratory maintenance, development of publication/data repositories) would be more appropriate, and in others, support to strengthen institutional policies, practices and systems (e.g. streamlining and strengthening financial management practices, staff induction and accountability processes, establishing institutional review boards) would be the most relevant action. The extent to which external input is required would vary according to the interventions, ranging from full-to-partial-to nil support. For example, external assistance may be required to support the provision of specialised training or the procurement of otherwise unaffordable equipment, but other interventions could be driven by the respective institutions themselves at a low cost such as the development of remuneration policies or more effective internal communication and collaboration mechanisms.

No single intervention type, or focus, would be sufficient to strengthen capacity across all 13 areas; rather, what is needed to facilitate a significant shift in RMS capacity within such SSA universities and research institutions is a combination of interventions, of differing levels of cost and complexity, variously led (or supported) by both internal and external actors. However, interventions that address (even in part) fiscal constraints and complex bureaucracies may be especially impactful given the centrality of these issues across many of the 13 categories reported here. Determining which combination of interventions may be most appropriate for any one institution should be a collaborative process, engaging both research and research support staff (from senior to junior levels) from the focal institution in the design and implementation of an RMS capacity strengthening plan. The finding that common capacity gaps existed in many different institutions across multiple countries suggests that time-consuming, external assessments of RMS capacity may not always be required to identify capacity strengthening priorities. Rather, institutional representatives could instead confirm which capacity gaps reported here apply in their context, prioritize these gaps and report additional ones (if any) that might be very specific to their institution. The commonalities in RMS
constraints across institutions further suggests that intervention combinations could be implemented at scale where resources and commitment allow.

Data availability

Underlying data

All requests to the corresponding author for copies of institutional reports will be duly considered. The reports have not been made available as a dataset because the reports cannot be de-identified without compromising anonymity. The reports were produced under ethical approval conditions for the individual projects which stated that only the research team would have access to the data.

Deidentified intermediary data is available from Harvard Dataverse.

This project contains the following underlying data:

- Research Management Systems Challenges Data Extraction - Anonymous.xlsx (Intermediary data extracted from 28 research management system capacity assessment reports)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

2. Consort: Scoping work on research management in LMICs, sub-Saharan Africa. London, United Kingdom: Consort; 2017. [Reference Source](https://www.consorthealthmanagement.org/)
Open Peer Review

Current Peer Review Status: ? ?

Version 1

Reviewer Report 03 August 2020

https://doi.org/10.21956/aasopenres.14199.r27578

© 2020 Kasprowicz V. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Victoria O. Kasprowicz 1
1 Africa Health Research Institute, Durban, South Africa
2 Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), Durban, South Africa

Pulford et al. present results of 28 research management and support (RMS) capacity assessments completed in 25 universities/research institutions from 15 SSA countries performed between 2014-2018. Thirteen distinct capacity gap categories were identified and the authors report that almost all the institutions faced significant gaps both within and across these categories Pulford et al. state that these multiple commonly shared gaps could not be strengthened by the introduction on one intervention type, but by a combination of interventions. I enjoyed reading this research note and found it to be a valuable contribution to a relatively limited literature pool. The emerging importance and focus on RMS capacity building highlights the need for further publications in this key area.

I acknowledge that this is a short research note but I feel that this publication could be improved with additional information:

- Considering the size of SSA I feel that it would be interesting to state the participating countries and/or more detail with regards to breakdown of institute vs university department. I understand there may be hesitation with listing the specific institutes/universities - but I do feel a little more information could be helpful in interpreting the findings.

- I found the methods/approach a little difficult to fully comprehend with the information provided. For example, the methods stated that an international benchmark was used as a comparison and that this benchmark was determined based on a literature review and consultation with various stakeholders. I think it might be nice to add details on the approach/details of the literature review (e.g. anglophone vs francophone journals, numbers, countries included in the reports etc). Also, it would be of interest to provide details of the participating stakeholders. It would help the interpretation of the paper if more detail on this international benchmark was provided and how it was used. Linked to the benchmark point, and as the authors state 'significant' gaps at almost all the sites, I
think it might be nice to provide a definition of ‘significant’ and what performance level was identified for the sites who didn’t have significant gaps.

- I feel it would be beneficial for more detail on the approach at the SSA sites. For example, details on the tools used to help the reader gain a better feel of how capacity gaps were identified e.g. questions for the semi-structured interviews and perhaps a detailed breakdown of the number of participating team members (scientists vs support staff) at each site. Additional questions I have include: What documents were reviewed as part of the assessment? Who carried out the ‘observation of facilities’? How were the documents and observation of facilities used in the process of identifying capacity gaps? How was the research focus/specialty of each site taken into account when identifying specific capacity gaps? How did the capacity gaps actually link with research activity and outputs at each site?

Despite the suggestions noted above, I feel the conclusions that common RMS capacity gaps do exist at many SSA research sites to be useful information that can hopefully guide future interventions efforts. Sites should be encouraged to lead the development of RMS capacity strengthening plans with embedded monitoring and evaluation as part of their strategic plan. Further sharing of gaps, challenges and progress in this area could help identify optimal intervention strategies and opportunities for intra-Africa collaboration.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: I am part of SANTHE which is a DELTAS Africa programme. Authors listed on this publication are members of the DELTAS Learning Research Programme (LRP) which is also part of the DELTAS Africa network. We have had a number of interactions over the last few years as members of this pan-African network. I confirm that this hasn’t affected my ability to write an objective and unbiased review of the article.

Reviewer Expertise: Immunology, HIV/TB, Research Capacity Strengthening

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 28 July 2020

https://doi.org/10.21956/aasopenres.14199.r27577

© 2020 Ezeh A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alex C. Ezeh

1 Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
2 School of Public Health, University of the Witwatersrand, Johannesburg, South Africa

- This research note presents and discusses results of 28 research management and support (RMS) capacity assessments of 25 universities and research institutions across 15 countries in SSA. The assessments were implemented between 2014 and 2018. The authors observed that “almost all the institutions assessed faced significant gaps in RMS capacity” across the 13 distinct but inter-related domains they identified. Severe financial constraints and institutional bureaucracy were seen as the two most obvious capacity gaps. The authors concluded that no single intervention would be sufficient to strengthen capacity across all the 13 domains.

- While this is an important study in an area where very little exists, there are a number of limitations in the current version of the research note. It is not clear how the questions in the semi-structured interview guides were framed. If these sought to identify gaps the respondents saw in their respective institutions, it will not be surprising to come to the conclusion the authors did regarding significant gaps across all the institutions assessed. Respondents will always find answers to any question they are asked in an interview, but such answers may not necessarily provide valid basis for the conclusion on the RMS capacity of these institutions. Even the staff of an institution with the best RMS capacity in the world would find something they could improve on. Stating that there are areas of improvement is not the same as having a capacity gap.

- RMS capacity is not an end in itself; it is supposed to support research. We know nothing about the state of research enterprise at these institutions and the extent to which the identified capacity gaps inhibit research productivity at the institutions. This is particularly important because the nature of what constituted a capacity gap varied enormously in how impactful they could be to research undertaking. For each of the 13 domains, you can almost create a scale that ranges from most severe impact on research to inconsequential impact on research and the inability to distinguish between these types of gaps within a domain in this research note is a major limitation. For example, “unreliable power supply” and “insufficient meeting space” as examples of physical infrastructure gaps are likely to have different impacts on research. There are also variations on how each of the 13 domains could affect research.
○ Related to the above point is the issue of the size of these institutions, which could be a university department or college or a whole research institute. To what extent do the identified gaps relate to factors that constraint research at the institutions or aspirational notions of what would be great to have at these institutions?

○ The authors noted that a third reviewer read each of the cases in which a specific gap was identified by only one of the initial two reviewers and then “made a final decision as to its inclusion”. We do not know in how many instances the decision was made to include the gap versus exclude it. Is it possible that the fact that the third reviewer already read about one of the initial reviewer’s assessment of a response as constituting a capacity gap would influence their identification of the gap? This would be the case if in majority of the cases, the third reviewer agreed with the identification of a capacity gap and this would generally exaggerate the number of gaps identified.

○ The authors identified a number of the “easy to do” interventions (purchase of laboratory equipment or ICT hardware; investment in laboratory, study or office spaces; training and technical assistance; and strengthening institutional policies, practices and systems). While these are all essential, in the absence of a coherent strategy to strengthen research institutions in SSA, these investments, even if they strengthen RMS at SSA institutions, are unlikely to transform the landscape of research systems in the region. RMS strengthening has to be part of an overall strategy to strengthen knowledge-based institutions in the region. Two critical ingredients to strengthening institutional research capacity in SSA are changing the current funding models and using local African capacity to drive the implementation of any capacity strengthening initiative in the region.

○ There are repeated references to the role of external actors in addressing capacity gaps in SSA. This needs further clarification. Current funding models that support SSA institutions through sub-awards and technical assistance from intermediary organizations based outside SSA will continue to undermine the capacity of African institutions. This funding model robs African institutions of access to the levels of funding needed to transform organizational systems and processes, compete for top African talents, and develop closer partnerships with primary funders of research. If it takes capacity to build capacity, the choice of African institutions as primary agencies for capacity building efforts in the region could be transformative. It affirms and further strengthens existing capacity in the region, ensures capacity solutions are appropriate and contextually relevant, and it could guarantee sustained partnerships beyond any specific project or grant.

○ I agree with the authors’ final conclusion on the critical role of institutional leaders in defining and prioritizing the capacity gaps/needs of their institutions; and I would hasten to add, and in finding the most appropriate and suitable interventions to mitigate the identified gaps.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Global Health, Population Studies/Demography, Research Capacity Strengthening, Urban Health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.