Pharmacological management of seizures in patients with COVID-19: a systematic review [version 1; peer review: 1 approved, 1 approved with reservations]

Priscilla Kolibe Mante¹, Nana Ofori Adomako², John-Paul Omuojine³, Paulina Antwi¹

¹Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
²Department of Pharmacy Practice, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
³Department of Psychiatry, Komfo Anokye Teaching Hospital, Kumasi, Ghana

Abstract

Background: Some patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported to exhibit neurological symptoms such as seizures and impaired consciousness. Our study reviews reported cases to assess the pharmacological approach to managing seizures in SARS-CoV-2 patients and associated outcomes.

Methods: A systematic review of case reports on the incidence of seizures following coronavirus disease 2019 (COVID-19) among patients that reported use of antiepileptic drugs (AEDs) in management was performed by using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines. Databases used included EMBASE, PubMed, SCOPUS, and Google Scholar. Data was presented as qualitative and descriptive data.

Results: In total, 67 articles were selected for full-text assessment, of which 19 were included in the final review. Patients had a median age of 54 years, most of whom were male. Remdisivir, dexamethasone, Laminavir, hydroxychloroquine, azithromycin, and Lopinavir-ritonavir were common agents used in the management of COVID-19. Most patients presented with either generalized tonic-clonic seizures or status epilepticus. Most patients received levetiracetam as drug choice or as part of their regimen. Other AEDs commonly prescribed included midazolam and sodium valproate. Some patients received no antiepileptic drug therapy. Most of the patients who died had more than one comorbidity. Also, most of the patients who died received COVID-19 treatment drugs. None of the patients who received midazolam as drug choice or as part of their regimen developed recurrent seizures in contrast to patients who received levetiracetam and sodium valproate as drug choice or as part of their regimen. Interestingly, none of the patients who received no AEDs suffered recurrent seizures or died.
Conclusions: Standard guidelines for managing seizures in COVID-19 patients may be required. A limitation of this review is that it involved the use of case reports with no controls and a small number of patients.

Keywords
SARS-CoV-2, neurological symptoms, levetiracetam, status epilepticus, epilepsy

This article is included in the Coronavirus (COVID-19) collection.
Introduction

Neurological manifestations have been reported in about one-third of patients with coronavirus disease 2019 (COVID-19). In addition to the primary respiratory symptoms, there have been neurological symptoms manifested at all levels of the nervous system (Mao et al., 2020). Several case studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have demonstrated neurological effects such as strokes, loss of consciousness, encephalopathy, generalized tonic-clonic convulsions and neuralgia (Beyls et al., 2020). This is not entirely surprising as SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) have previously been associated with sporadic neuropathological changes (Desforges et al., 2020; Lau et al., 2004).

SARS-CoV-2 has been proposed to enter the central nervous system (CNS) either via systemic vascular dissemination or by crossing the cribriform plate of the ethmoid bone (Baig et al., 2020). The latter mechanism is speculated to contribute to anosmia experienced by a quarter of patients (Baig et al., 2020). Similar to SARS-CoV-1, the new SARS-CoV-2 is believed to make its way into biological cells via the angiotensin-converting enzyme 2 (ACE2) receptor (Lan et al., 2020).

Although few cases have been reported, studies indicate that seizures may occur early in the disease process. Nevertheless, the presence of seizures bears heavily on the management and outcome of patients with SARS CoV-2. Recurrent or prolonged seizures, as occurs in status epilepticus, may contribute to or worsen hypoxic encephalopathy, cerebrovascular events, and cytokine storms that can further lead to acute seizures (Bartiromo et al., 2020).

Further to this, COVID-19 may be more difficult to treat in patients exhibiting seizures than in other patients. Antiepileptic drugs (AEDs) tend to cause complex drug-drug interactions and adjustment of these drugs may be necessary to prevent heart, liver, or kidney complications that may occur in patients with severe COVID-19 (Asadi-Pooya et al., 2020). No special guidelines currently exist for management of seizure symptoms in COVID-19. Hence, seizures in patients are controlled with currently available AEDs based on seizure types exhibited by patients. We provide a review of publications on cases of seizure disorders reported in patients with COVID-19, the pharmacological approach to management and outcomes on mortality exploring implications on management of patients.

Methods

Strategy for literature search

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to perform a systematic review of the literature (Moher et al., 2010; Uwizeye et al., 2021). Comprehensive electronic literature searches were performed in EMBASE, PubMed, SCOPUS, and Google Scholar to identify articles that covered the neuropathological symptoms in COVID-19. This review primarily aimed to synthesize information on seizure-related complications in patients with COVID-19.

The search included articles published in the English Language from January to December, 2020. Keywords used included ‘neurology’ or ‘neurological manifestations’ or ‘nervous system’, ‘neuropathy’ or ‘nerves’ and ‘COVID-19’ or ‘SARS-CoV-2’ and ‘antiepileptic drugs’ or ‘antiseizure drugs’. A combination of keywords and MeSH terms were applied to maximize the output from literature findings. The full search string for the database search was COVID-19 OR SARS-CoV-2 OR AND neurological manifestations OR nervous system OR antiepileptic drugs OR antiseizure drugs. The bibliography list of selected articles were screened by reading through the corresponding abstracts in order to identify additional appropriate studies. Screening was done by JPO and disagreements were resolved by all authors. As seizure complications were rare in COVID-19, all articles reporting seizures were included. We included all types of articles or preprints (from the bioRxiv) that met the following criteria: reported the incidence of seizures following COVID-19 among patients of all ages or reported the use of antiepileptic drugs (AEDs) in the management of COVID-19-related seizures. Studies that reported on patients with a history of seizure disorders were excluded from the study. Only reported cases of seizure complications for which explicit temporal or causal association with COVID-19 infection could be determined were included in the review. Animal studies were excluded. All studies selected were initially managed using Microsoft Word v16.45. This review has not been registered and a review protocol was not prepared.

Data extraction

Data was extracted with the aid of a pre-designed data extraction form. Data extraction from full text of eligible articles was done independently by two investigators (PKM and NOA). The following data were obtained: author, country of report, demographic details, the number of patients with COVID-19 having seizure complications, frequency and prevalence of seizures, electroencephalogram (EEG), neuroimaging and/or other laboratory investigations associated with other neuropathological symptoms, management strategies and outcomes. Accuracy of extracted data was rechecked by a third independent investigator. Investigators made every effort to prevent data duplication. Quality of the included cases was assessed based on Consensus-based Clinical Case Reporting (CARE) guidelines for case reports by ensuring the selected cases met the criteria as stated in the 2013 CARE checklist.

Data synthesis and statistical analyses

Studies were first tabulated as qualitative data as selected studies were case reports. Given the small number of cases, descriptive analysis was performed to generate frequencies and percentages. All analyses and data visualisation were conducted using STATA version 13 (StataCorp, College Station, TX, USA).

Results

Study characteristics

A search of literature yielded 249 citations. Following duplicates removal, and titles and screening of abstracts, 67 articles
were selected for full-text assessment. Subsequent to full-text evaluation, 19 articles were used for the final review (Figure 1). Characteristics of the included articles are provided in Table 1. All articles were case reports/series. One article was a multicenter study. Three case reports were of fair quality whereas all other studies were graded to be of good or excellent quality.

Patient characteristics

The 19 articles reported incidence of seizure complications among 29 patients with COVID-19 from nine countries (USA [n=12], Germany [n=2], Italy [n=2], Switzerland [n=2], Iran [n=5], Ireland [n=2], Spain [n=1], France [n=1], Japan [n=1], and Kuwait [n=1]). Of these, 13 (44.8%) had presented with seizures as their primary complaint and first symptom of COVID-19. One study described the incidence of reversible posterior leukoencephalopathy syndrome (PRES) presenting as refractory status epilepticus. The age of the patients ranged from 2 days to 82 years, the median being 54 (interquartile range, 37–72) years. Of the patients, 41.4% (12/29) were females (Table 1). Moreover, 37.9% (11/29), 34.5% (10/29), and 25.8% (8/29) had 0, 1, and ≥2 comorbidities, respectively. COVID-19 treatment drugs were reported for 52% (15/29) of patients. The treatments for COVID-19 received included remdesivir (4 patients), dexamethasone (1 patient), Laminavir (1 patient), hydroxychloroquine (7 patients), azithromycin (1 patient), and Lopinavir-ritonovar (4 patients).

Seizure types and antiepileptic drugs administered

The distribution of the types of seizures presented by the patients are summarized in Figure 2a. Most patients presented with either generalized tonic-clonic seizures (9/29; 31%) or status epilepticus (9/29; 31%). Two patients presented with non-convulsive status epilepticus while one patient suffered...
<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Patient No.</th>
<th>Sex</th>
<th>Age (yrs.)</th>
<th>COVID-19 Drugs</th>
<th>AEDs</th>
<th>Seizure Disorder Reported</th>
<th>Comorbidities</th>
<th>Seizure History</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Karambelkar et al., 2020)</td>
<td>USA</td>
<td>1</td>
<td>male</td>
<td>32</td>
<td>Hydroxychloroquine,</td>
<td>Not stated</td>
<td>Generalized Tonic-Clonic Seizure</td>
<td>Sleep apnea</td>
<td>Negative</td>
<td>Patient ultimately discharged from intensive care unit, remained hemodynamically stable.</td>
</tr>
<tr>
<td>(Abdulsalam et al., 2020)</td>
<td>USA</td>
<td>2</td>
<td>male</td>
<td>82</td>
<td>None</td>
<td>Lorazepam, Levetiracetam</td>
<td>Generalized Tonic-Clonic Seizure</td>
<td>Chronic systolic heart failure, hypertension</td>
<td>Negative</td>
<td>The patient succumbed to ARDS despite optimal medical therapy.</td>
</tr>
<tr>
<td>(Balloy et al., 2020)</td>
<td>Kuwait</td>
<td>3</td>
<td>male</td>
<td>32</td>
<td>Lopinavir-Ritonavir, Hydroxychloroquine</td>
<td>Diazepam, Midazolam, Levetiracetam</td>
<td>Generalized Tonic-Clonic Seizure, Status Epilepticus</td>
<td>Nil of note</td>
<td>Negative</td>
<td>Convulsions aborted after 4 days in stable condition after remaining afibrile after two negative swabs for SARS-CoV-2.</td>
</tr>
<tr>
<td>(Chen et al., 2020)</td>
<td>USA</td>
<td>4</td>
<td>male</td>
<td>59</td>
<td>None</td>
<td>Clobazam, Levetiracetam</td>
<td>Non-convulsive status epilepticus</td>
<td>Atrial fibrillation, obstructive sleep apnea</td>
<td>Negative</td>
<td>Positive before discharged from ICU.</td>
</tr>
<tr>
<td>(Bailey et al., 2020)</td>
<td>France</td>
<td>5</td>
<td>female</td>
<td>37</td>
<td>None</td>
<td>Levetiracetam, Phenytoin</td>
<td>Status Epilepticus</td>
<td>Multiple end stage renal disease</td>
<td>Negative</td>
<td>Seizures resolved, discharges slowed, mental status improved.</td>
</tr>
<tr>
<td>(Chen et al., 2020)</td>
<td>USA</td>
<td>6</td>
<td>female</td>
<td>60</td>
<td>Remdisivir</td>
<td>Levetiracetam</td>
<td>Non-convulsive status epilepticus</td>
<td>Hypertension</td>
<td>Negative</td>
<td>Improved.</td>
</tr>
<tr>
<td>(Abdulsalam et al., 2020)</td>
<td>USA</td>
<td>7</td>
<td>male</td>
<td>50</td>
<td>Remdisivir</td>
<td>Levetiracetam</td>
<td>Non-convulsive status epilepticus</td>
<td>No note</td>
<td>Negative</td>
<td>Remdisivir showed moderate to severe seizure activity.</td>
</tr>
<tr>
<td>(Chen et al., 2020)</td>
<td>USA</td>
<td>8</td>
<td>female</td>
<td>38</td>
<td>Remdisivir</td>
<td>Levetiracetam</td>
<td>Seizure-like</td>
<td>Orthotopic heart transplant, heterotopic kidney transplant, diabetes, chronic obstructive sleep apnea, pulmonary hypertension</td>
<td>Negative</td>
<td>Orthotopic heart transplant, heterotopic kidney transplant, diabetes, chronic obstructive sleep apnea, pulmonary hypertension</td>
</tr>
</tbody>
</table>

Table 1. Descriptive characteristics of included studies.
<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age (yrs.)</th>
<th>Seizure History</th>
<th>Comorbidities</th>
<th>AEDs</th>
<th>COVID -19 Drugs</th>
<th>Seizure Outcome</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>male</td>
<td>74</td>
<td>Refractory Epileptic</td>
<td>IgG kappa multiple myeloma</td>
<td>Hydroxychloroquine, Lopinavir-Ritonavir, dexamethasone, ceftriaxone, enoxaparin</td>
<td>Patient stabilized.</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>10</td>
<td>female</td>
<td>54</td>
<td>Status Epilepticus</td>
<td>HIV</td>
<td>Diazepam, lacosamide, sodium valproate</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>11</td>
<td>male</td>
<td>42</td>
<td>Status Epilepticus</td>
<td>No</td>
<td>Hydroxychloroquine, Midazolam, Levetiracetam, phenobarbital, valproate, phenytoin, midazolam, fentanyl</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>12</td>
<td>male</td>
<td>29</td>
<td>Status Epilepticus</td>
<td>HIV</td>
<td>Hydroxychloroquine, Midazolam, Levetiracetam</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>13</td>
<td>male</td>
<td>2 days</td>
<td>Status Epilepticus</td>
<td>Nil of note</td>
<td>Phenobarbital, Midazolam, Levetiracetam</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>14</td>
<td>male</td>
<td>11</td>
<td>Status Epilepticus</td>
<td>Nil of note</td>
<td>Phenytoin, Levetiracetam</td>
<td>Seizure-like events</td>
<td>Patient was still undergoing treatment.</td>
<td>Patient was still undergoing treatment.</td>
</tr>
<tr>
<td>15</td>
<td>male</td>
<td>41</td>
<td>Status Epilepticus</td>
<td>Nil of note</td>
<td>Lamotrigine</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
<tr>
<td>17</td>
<td>male</td>
<td>41</td>
<td>Status Epilepticus</td>
<td>Nil of note</td>
<td>Levetiracetam, Valproate</td>
<td>Seizure-like events</td>
<td>Patient was still undergoing treatment.</td>
<td>Patient was still undergoing treatment.</td>
</tr>
<tr>
<td>18</td>
<td>male</td>
<td>72</td>
<td>Status Epilepticus</td>
<td>HIV</td>
<td>Hydroxychloroquine, Lopinavir-Ritonavir, azithromycin</td>
<td>Seizure-like events</td>
<td>Expired in ICU.</td>
<td>Expired in ICU.</td>
</tr>
</tbody>
</table>

Reference:

- Gomez-Enjuto et al., 2020
- Emami et al., 2020
- Bhatta et al., 2020
- Moriguchi et al., 2020
- Haddad et al., 2020
- Haddad & Mannur, 2020
<table>
<thead>
<tr>
<th>Reference</th>
<th>Patient No.</th>
<th>Country</th>
<th>COVID-19 Drugs</th>
<th>AEDs</th>
<th>Sex</th>
<th>Age (yrs.)</th>
<th>Seizure Disorder Reported</th>
<th>Comorbidities</th>
<th>Seizure History</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bernard-Valnet et al., 2020)</td>
<td>20</td>
<td>Switzerland</td>
<td>None</td>
<td>Clonazepam, Valproate</td>
<td>female</td>
<td>64</td>
<td>Focal status epileptic</td>
<td>None stated</td>
<td>Negative</td>
<td>The patient markedly improved 96h after admission with resolution of her symptoms.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(Zanin et al., 2020)</td>
<td>21</td>
<td>Switzerland</td>
<td>None</td>
<td>None</td>
<td>female</td>
<td>67</td>
<td>Unclassified</td>
<td>None stated</td>
<td>Negative</td>
<td>Neurological symptoms resolved within 24h.</td>
</tr>
<tr>
<td>(Hepburn et al., 2021)</td>
<td>22</td>
<td>Italy</td>
<td>None</td>
<td>Lacosamide, levetiracetam, phenytoin</td>
<td>female</td>
<td>54</td>
<td>Generalized tonic Clonic seizures</td>
<td>AcomA aneurysm</td>
<td>Negative</td>
<td>The patient was transferred to rehabilitation without sensorimotor deficits after 12 days.</td>
</tr>
<tr>
<td>(Logmin et al., 2020)</td>
<td>23</td>
<td>USA</td>
<td>Not stated</td>
<td>Levetiracetam</td>
<td>male</td>
<td>76</td>
<td>Myoclonic and Focal Seizures</td>
<td>Asthma, chronic kidney disease, diastolic dysfunction, hypertension hyperlipidemia, left bundle branch block, cervical fusion</td>
<td>Negative</td>
<td>Clinical and electrographic seizure activity subsided.</td>
</tr>
<tr>
<td>(Fasano et al., 2020)</td>
<td>24</td>
<td>USA</td>
<td>Not stated</td>
<td>Levetiracetam</td>
<td>male</td>
<td>82</td>
<td>Focal Status Epileptic</td>
<td>COPD, complete heart block, chronic kidney disease, venous thromboembolic disease,</td>
<td>Negative</td>
<td>Seizure frequency improved after receiving levetiracetam. Patient remained on the ventilator, family opted for withdrawal of life-sustaining support after 20 days of ICU stay</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Germany</td>
<td>Not stated</td>
<td>Not stated</td>
<td>female</td>
<td>70</td>
<td>Non-epileptic seizures/ Convulsive syncope</td>
<td>Syncope, neuropathic pain, atrial fibrillation</td>
<td>Negative</td>
<td>She recovered well without requiring intensive care.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Italy</td>
<td>Lopinavir-Ritonavir</td>
<td>None</td>
<td>male</td>
<td>54</td>
<td>Focal Seizure</td>
<td>Nil of note</td>
<td>Negative</td>
<td>Patient's EEG recorded the following day after first incident indicated no abnormalities. Patient recovered after 2 weeks of antiviral therapy</td>
</tr>
<tr>
<td>Reference</td>
<td>Patient No.</td>
<td>Country</td>
<td>COVID -19 Drugs</td>
<td>AEDs</td>
<td>Sex</td>
<td>Age (yrs.)</td>
<td>Seizure Disorder Reported</td>
<td>Comorbidities</td>
<td>Seizure History</td>
<td>Outcome</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>(Gaughan et al., 2020)</td>
<td>27</td>
<td>Ireland</td>
<td>None</td>
<td>None</td>
<td>male</td>
<td>87</td>
<td>Generalized tonic-clonic seizure</td>
<td>Nil of note</td>
<td>Negative</td>
<td>Patient remained clinically well, no respiratory symptoms during admission. EEG was performed following discharge demonstrated intermittent fronto-temporal dysfunction maximal on the right side, compatible with the known imaging abnormalities.</td>
</tr>
<tr>
<td>28</td>
<td>Ireland</td>
<td>None</td>
<td>Lorazepam</td>
<td>female</td>
<td>77</td>
<td>Generalized tonic-clonic seizure</td>
<td>Nil of note</td>
<td>Negative</td>
<td>Seizure aborted, Montreal Cognitive Assessment (MOCA) performed four months post hospitalization was 24/30, suggesting persistent cognitive deficit.</td>
<td></td>
</tr>
<tr>
<td>(Elgamasy et al., 2020)</td>
<td>29</td>
<td>Germany</td>
<td>None</td>
<td>Levetiracetam, Clobazam, Lacosamide, Magnesium</td>
<td>female</td>
<td>73</td>
<td>Focal seizure</td>
<td>Hypertension</td>
<td>Negative</td>
<td>The patient was discharged home for self-isolation</td>
</tr>
</tbody>
</table>
refractory status epilepticus. The majority (19/29; 65.5%) of patients received levetiracetam as drug choice or as part of their regimen (Figure 2b). Moreover, 17.2% (5/29) and 13.8% (4/29) received midazolam and sodium valproate as drug choice or as part of their regimen, respectively, whereas 17.2% (5/29) received no drug therapy (Figure 2).

Seizures and patient outcomes
In all, 24.1% (7/29) of patients died, including 9.1% (1/11) of patients with no comorbidities and 33.3% (6/18) of those with ≥1 comorbidity. Moreover, 28.6% (4/14) of patients who received no COVID-19 treatment drugs died whereas 20% (3/15) of those who received COVID-19 treatment drugs died. Overall, 31.0% (9/29) of patients had recurrent seizures of whom 22.22% (2/9) died. None of the patients who received midazolam as drug choice or as part of their regimen developed recurrent seizures whereas 52.6% (10/19) and 25% (1/5) of patients who received levetiracetam and sodium valproate as drug choice or as part of their regimen developed recurrent seizures, respectively (Table 2). The proportion of patients who received midazolam, levetiracetam, or sodium valproate as drug choice or as part of their regimen who died were 60% (3/5), 26.3% (5/19), and 50% (2/4), respectively. Moreover, none of patients who received no AEDs suffered recurrent seizures or died.

Discussion
This systematic review synthesized evidence on the pharmacological management and outcomes in patients with COVID-19 who experienced seizure disorders. Our findings revealed significant heterogeneity in the pharmacological management of seizures in COVID-19 patients. This may be
ascribed to the limited knowledge of the pathophysiology of seizures in COVID-19 patients and the lack of evidence-based guidelines. In all, nearly 1 in 4 patients died which may reflect the poor prognosis and clinical challenge in managing these patients. The study also identified status epilepticus and generalized tonic-clonic seizures as the seizure types with highest incidence in COVID-19 patients. Moreover, development of recurrent seizures and mortality appeared to vary according to the AED used.

Researchers have related the incidence of seizures in COVID-19 patients to factors such as multiple organ failure, hypoxia and severe metabolic and electrolyte changes that may be experienced by these patients (Asadi-Pooya et al., 2020). A suggested mechanism by (Nikbakht et al., 2020) associates the incidence of seizures in patients with COVID-19 to increased proinflammatory cytokine (IL-1B, IL-6, TNF-a) levels by microglia/astrocytes in the brain after viral entry through nerve pathways (directly) or ACE2 receptors (indirectly). This results in the elevation glutamate and aspartate levels, and reduction in levels of Gamma-amino butyric acid (GABA) and disruption of the blood brain barrier (BBB), in the CNS. These effects are notably involved in the pathophysiology of seizures in patients (Nikbakht et al., 2020).

Evidence from literature suggests poorly-controlled brain inflammation in the pathophysiology of status epilepticus (SE). Elevated levels of proinflammatory cytokines have been identified in the CSF of patients with refractory SE (Wang & Chen, 2018). Generalized seizure pathogenesis has also been associated with cytokines - TNF-a, IL-1B and IL-6 (Dede et al., 2017). The increased cytokine levels suggested in COVID-19 may explain the high incidence of status epilepticus and generalized seizures in COVID-19 patients.

Levetiracetam is one of three drugs identified to have high efficacy and comparable side effect profiles in the management of refractory SE (Chamberlain et al., 2020; Kapur et al., 2019). Regardless, the benzodiazepines remain first line in SE according to the NICE Guidelines (Nunes et al., 2012). Levetiracetam is an AED initially approved for partial onset seizure as an adjunct and subsequently as an adjunct in juvenile myoclonic seizures and generalized tonic-clonic seizures in the US. In the European Union, it is used as initial monotherapy in these conditions. With low protein binding and predominant kidney excretion, pharmacokinetic interactions are not a major concern. However, enzyme-inducing AEDs have been shown to cause a reduction in levetiracetam serum levels and promote higher clearance (Abou-Khalil, 2008). Its good pharmacokinetic interaction profile may warrant its use in COVID-19 cases. The mechanism of action of levetiracetam is via binding to SV2A, a synaptic vesicle protein, which results in the reduction of vesicle release rate of neurotransmitters (Lynch et al., 2004).

Levetiracetam has been identified to decrease levels of the cytokines, IL-1B, IL-2 and TNF-a (Himmerich et al., 2013) and may therefore be beneficial in seizure management in COVID-19 patients. However, a study conducted by Li et al. (2013) revealed the role of levetiracetam in inhibiting CD8+ T-Lymphocyte function, which is key in protection against viral infections. The study related this effect to the elevated incidence of upper respiratory tract infections in patients receiving levetiracetam. Administration of levetiracetam in COVID-19 patients may therefore be associated detrimental respiratory effects and may explain the association between increased mortality and levetiracetam administration in COVID-19 patients with seizures as seen in our study. However, further research will be needed in drawing definite conclusions on this association.

The finding of increased mortality in patients with SE is consistent with the general high mortality associated with SE. Status epilepticus has evidently remained a clinical emergency with poor short- and long-term outcomes as well as high morbidity and mortality in the affected population (Marawar et al., 2018; Stelzer et al., 2015). An acute symptomatic cause such as a CNS infection, as occurs in COVID-19, has been identified.

Table 2. Outcomes of AED-treated COVID-19 patients experiencing seizures.

<table>
<thead>
<tr>
<th>AED(s)</th>
<th>Recurrent seizures</th>
<th>Survived</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n = 9)</td>
<td>No (n = 20)</td>
</tr>
<tr>
<td>Levetiracetam (n = 19)</td>
<td>9 (47.37)</td>
<td>10 (52.63)</td>
</tr>
<tr>
<td>Midazolam (n = 5)</td>
<td>0 (0)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Sodium Valproate (n = 4)</td>
<td>3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Other drugs (n=2)</td>
<td>0 (0)</td>
<td>2 (100)</td>
</tr>
<tr>
<td>No drug (n=6)</td>
<td>0 (0)</td>
<td>6 (100)</td>
</tr>
</tbody>
</table>

AED = antiepileptic drug; COVID-19= coronavirus disease 2019
as a critical factor related to morbidity. Treatment challenges such as delayed initiation of therapy and lack of effective medication have been identified to be possibly related to higher mortality (Stelzer et al., 2015).

Conclusion

The adequacy of antiseizure medication administered may be of concern and there is a need for the establishment of proper seizure management guidelines in COVID-19.

Study limitation

Our study involved the use of case reports with no controls and a significantly small number of patients.

References

Lynch BA, Lambeng N, Nocka K, et al.: The synaptic vesicle protein SV2A is

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Open Peer Review

Current Peer Review Status: ? ✓

Version 1

Reviewer Report 26 July 2021

https://doi.org/10.21956/aasopenres.14344.r28657

© 2021 Tagoe T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Thomas A. Tagoe
Department of Physiology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana

The authors present here a systemic review of case reports on the incidence of seizures among patients who were hospitalised due to COVID-19 infections. The reports include those published between January to December 2020. The databases that were searched as well as the search string used is provided to allow reproduction of their work. The authors identify 67 articles which was narrowed down to 19. Based on these reports, the frequency of specific anti epileptic drugs used in case management is clearly reported as well as the type of seizures and patient outcomes. Studies that reported on patients with a history of seizures were excluded. Only cases of seizure complication for which a temporal or causal relationship with COVID-19 infection could be determined were included. This contributed towards focusing the scope of the review. The authors do a good job of pulling out key pieces of information from each report and discuss the potential pathways by which AEDs could overlap with COVID-19. Based on the reports presented as part of the review, the authors conclude that AEDs could potentially be worsening patient outcomes. Although the review is scientifically sound, there are a few outstanding points which could further strengthen the review if addressed.

1. Figure 1 shows that 48 out of 67 retrieved records were excluded. Details on the common reasons for exclusion among the 48 cases that were cut will be useful.

2. According to the methodology, data extracted included "...frequency and prevalence of seizures, electroencephalogram (EEG), neuroimaging and/or other laboratory investigations associated with other neuropathological symptoms,...". However this information is not included in any of the tables or results presented.

3. Under the study characteristics, there is no basis given for judging case reports as "fair", "good" or "excellent".

4. The labelling of the flow diagram in figure 1 could be done vertically rather than horizontally, purely for aesthetic reasons and better reading.
5. Information on seizure history is absent for some of the reported cases (9 and 10). Considering that this was a critical point in selection of cases, it will be great to know if this information was absent from the primary reports or erroneously left out of the review.

6. The data in this review clearly shows that all the patients who did not receive AEDs (n = 6), did not suffer recurrent seizures and also survived. This is a curious finding which could have been further explored in the discussion.

7. Based on the mechanism of action of levetiracetam, the authors propose that "Administration of levetiracetam in COVID-19 patients may therefore be associated detrimental respiratory effects and may explain the association between increased mortality and levetiracetam administration in COVID-19 patients with seizures as seen in our study". Although this is sound, patients that received levetiracetam also showed the highest survival rates among all the patients who received AEDs. A discussion around another AED with a different mechanism of action from levetiracetam and worse survival rates would have enriched the review.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Not applicable

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epilepsy, Plasticity, Learning and Memory

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
This is an interesting review on reported cases of seizure disorders in COVID-19 cases in 2020, the diverse pharmacological agents used and outcomes on mortality. The authors shed light on the limitations of this review as there are not a lot of reported cases within the timeline of the investigation. In our opinion, the authors should consider the following highlighted points to expound on the findings from their review.

Major Comments

1. In reading the introduction, the authors state the information provided by this review. However, it is still unclear what unmet need this review is aiming to answer. Providing more clarification (at least a sentence or two) on the purpose of this review, in our opinion, will underscore the relevance of the review.

2. What were the criteria for selecting the 4 electronic literature search platforms used for this review? Could more information be garnered from these additional search platforms - the Cochrane Library, Web of Science Core Collection, CENTRAL, and clinicaltrials.gov?

3. What was the rubric for the grading system for the reports (fair quality vs good/excellent quality)?

4. There are a number of inconsistencies in the patient and publication counts. Specifically,
 1. It is stated that there are 19 studies/references but Table 1 only shows 18 references.
 2. Under patient characteristics, it is stated that the patients were from 9 countries, however, there are 10 countries listed.
 3. The patient count from the patient characteristics section adds up to 29, however, the table only shows data for 28 patients.

5. In Table 1, for patients 9 and 10, are the seizure histories not reported or negative? Please clarify.

6. The authors stated that there is significant heterogeneity in the pharmacological management of seizures in COVID-19. Was that conclusion based on any inferential statistics run or it was based on the observation from the descriptive statistics?

7. In patient 16, Moriguchi et al. indicated that the patient received Laninamivir. Is this the same as Laminavir indicated in Table 1? Why is there an asterisk on Laminavir (no information is provided on the use of the asterisk in the table legend)?

8. The conclusion of the review article could be expounded a little bit further. The authors stated that ‘The adequacy of anti-seizure medication administered may be of concern’. How did they come up with this conclusion?

9. In the title of this review, the authors refer to the pharmacological management of seizures.
However, the term, 'pharmacological management' does not just entail the choice of pharmacological agent (which is the highlight of this review), but also the duration of therapy, dose, possible side effects, and other aspects. Thus, in our opinion, the title does not fully represent the content of the review.

Minor Comments

1. In the co-morbidities column for table 1, different terms have been used to signify no comorbidities – no, nil of note, and none stated. The authors can consider using one term for consistency.

2. In table 1, the seizure description for patients 7 & 8 are incomplete (as compared to patients 12, 13 and 14).

3. Please define ROSC (as used for patient 19 in table 1).

4. There are words omitted in the discussion section, for instance:
 1. This results in the elevation of glutamate and aspartate levels..........................

 2. Administration of levetiracetam in COVID-19 patients may therefore be associated with detrimental......

References

Are the rationale for, and objectives of, the Systematic Review clearly stated?

Partly

Are sufficient details of the methods and analysis provided to allow replication by others?

Yes

Is the statistical analysis and its interpretation appropriate?

Yes

Are the conclusions drawn adequately supported by the results presented in the review?

Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Parkinson's disease, stroke, neurological disorders, neuropharmacology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.